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CHAPTER
ONE

INTRODUCTION

1.1 Summary

This documentation covers the 0.4.0 version of Oryx Linux.

Oryx Linux is a Linux® distribution targeted at embedded applications and based on the work of The Yocto Project
and OpenEmbedded.

1.2 Motivation

The Oryx Linux project is primarily motivated by a desire to incorporate a lightweight Linux container implemen-
tation into the OpenEmbedded build system whilst maintaining the benefits of both systems. The key word here is
‘lightweight’: we’re avoiding fully-integrated systems such as Docker which are targeted at cloud computing deploy-
ments rather than embedded deployments. Instead we’re using runc, the lightweight container runtime which sits at
the heart of Docker, without any of the surrounding tools such as containerd and docker itself. This gives us the
flexibility to address the needs of the embedded use-case.

One of the main aims of this project is to provide a developer workflow which is familiar to existing OpenEmbedded
users. You should not be required to learn a new build system or method of creating images (such as Docker and its
corresponding Dockerfile syntax) in order to incorporate the benefits of containers into an embedded Linux product.
Keeping the focus on the OpenEmbedded workflow ensures that we retain all the benefits of this system, such as the
excellent license compliance tooling, the extensible SDK and a proper cross-compilation environment. Other methods
of creating container-based Linux systems are typically targeted at cloud computing deployments and don’t address
these issues that crop up when shipping an embedded Linux product.

The benefits of Linux containers have been discussed at length elsewhere so we won’t cover the general benefits here.
However, it’s worth mentioning the additional benefits that we get in the embedded world:

» The ability to isolate applications requiring access to specialised hardware from those which just use ‘normal’
Linux interfaces such as the network and filesystems.

* The ability to mix legacy software which is dependent on specific older versions of system libraries with an
up-to-date and secure base system. This is especially relevant in the embedded space where legacy applications
abound.

* The ability to update and restart a full application stack cleanly and quickly by restarting a container guest
instead of rebooting the whole device. For devices with long startup times there can be significant benefit here.



https://www.yoctoproject.org/
https://www.openembedded.org/
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1.3 Support

For support requests, bug reports or other feedback please open an issue in the Togdn Labs bug tracker or contact us

at support@toganlabs.com.

1.4 Notation

The following notation is used for arguments:
* ARGUMENT: A required argument.

* [ARGUMENT]: An optional argument.

* ARGUMENTS. . .: One or more required arguments which are not parsed further by oryxcmd. This is typically

used for arguments which are passed through to another application.

1.5 Copyright and Trademark notices

s

This work is licensed under a Creative Commons Attribution 4.0 International License.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
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CHAPTER
TWO

RELEASE HISTORY

2.1 Oryx Linux

2.1.1 v0.4.0

Changes since v0.3.1:
» Updated to OpenEmbedded “sumo” stable release.

» Updated to oryx-apps v0.2.4. See the oryx-apps release notes for further details: http://downloads.toganlabs.
com/oryx/oryx-apps/0.2.4/RELEASE_NOTES.txt.

 Use the Linux LTS release series 4.14.y for all supported platforms.
The following platforms are supported in this release:
* gemux86
* gemux86-64
* raspberrypi
* raspberrypi2
* raspberrypi3
* raspberrypi3-64
* beaglebone-yocto
This release is available in the following forms:
* Source code using repo tool: See tag “v0.4.0” in the git repository at https://gitlab.com/oryx/oryx-manifest.git.
* Source code tarball: See https://www.toganlabs.com/downloads/oryx/distro/0.4.0/oryx-0.4.0.tar.xz.

* Various compiled images: See files under https://www.toganlabs.com/downloads/oryx/distro/0.4.0/.

2.1.2 v0.3.1

Changes since v0.3.0:
* Incorporated bugfixes and security patches accumulated on the “rocko” branch of Yocto Project.
» Updated to oryx-apps v0.2.2. See the oryx-apps release notes for further details:
— https://downloads.toganlabs.com/oryx/oryx-apps/0.2.2/RELEASE_NOTES.txt
— https://downloads.toganlabs.com/oryx/oryx-apps/0.2.1/RELEASE_NOTES.txt



http://downloads.toganlabs.com/oryx/oryx-apps/0.2.4/RELEASE_NOTES.txt
http://downloads.toganlabs.com/oryx/oryx-apps/0.2.4/RELEASE_NOTES.txt
https://gitlab.com/oryx/oryx-manifest.git
https://www.toganlabs.com/downloads/oryx/distro/0.4.0/oryx-0.4.0.tar.xz
https://www.toganlabs.com/downloads/oryx/distro/0.4.0/
https://downloads.toganlabs.com/oryx/oryx-apps/0.2.2/RELEASE_NOTES.txt
https://downloads.toganlabs.com/oryx/oryx-apps/0.2.1/RELEASE_NOTES.txt
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Added support for Beaglebone Black devices using the meta-yocto-bsp layer.
Added oryx-guests initscript to auto-start all enabled guests at boot and stop all guests at shutdown.

Allow configuration of Linux capabilities granted to guest containers. Example application profiles intended for
usage as guests (minimal and full-cmdline profiles) select the capabilites needed to run sshd.

Add a start-sshd script, used in minimal and full-cmdline example application profiles to launch
sshd with necessary initialisation and output logging.

Drop obsolete demo application profile.

The following platforms are supported in this release:

beaglebone
gemux86
gemux86-64
raspberrypi
raspberrypi2
raspberrypi3

raspberrypi3-64

This release is available in the following forms:

Source code using repo tool: See tag “v0.3.1” in the git repository at https://gitlab.com/oryx/oryx-manifest.git
Source code tarball: See https://www.toganlabs.com/downloads/oryx/distro/0.3.1/oryx-0.3.1.tar.xz

Various compiled images: See files under https://www.toganlabs.com/downloads/oryx/distro/0.3.1/

2.1.3 v0.3.0

Changes since v0.2.0:

Updated to OpenEmbedded “rocko” stable release

Updated to oryx-apps v0.2.0. See the oryx-apps release notes for further details: http://downloads.toganlabs.
com/oryx/oryx-apps/0.2.0/RELEASE_NOTES.txt.

Added support for 64-bit demo platforms: gemux86-64 and raspberrypi3—-64.

Dropped support for the arduino-yun platform and Oryx Lite. This was holding back further integration of
the core features we want to include in Oryx so we had to let it go.

Use the Linux LTS release series 4.9.y for all supported platforms.

Switch guest image init system from oryx—-guest—init to dumb-init. This is a more widely deployed
and better tested tiny init system written in C.

Add ca-certificates into the host application profile to support the use of https source URLs.

Allow the main service which runs when a guest image is started to be specified via the
ORYX_APPLICATION_COMMAND variable in an application profile.

Provide image. json file with all images including more detailed information to support development of an
image index.

The following platforms are supported in this release:

gemux86
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* gemux86-64
* raspberrypi
* raspberrypi2
* raspberrypi3
* raspberrypi3-64
This release is available in the following forms:
* Source code using repo tool: See tag “v0.3.0” in the git repository at https://gitlab.com/oryx/oryx-manifest.git.
» Source code tarball: See https://www.toganlabs.com/downloads/oryx/distro/0.3.0/oryx-0.3.0.tar.xz.

* Various compiled images: See files under https://www.toganlabs.com/downloads/oryx/distro/0.3.0/.

2.1.4 v0.2.0

This release incorporates the following components:
* OpenEmbedded “pyro” stable release
* meta-oryx v0.2.0
* oryx-apps v0.1.1
The following platforms are supported in this release:
* gemux86
* raspberrypi
* raspberrypi3
* arduino-yun
This release is available in the following forms:
* Source code using repo tool: See tag “v0.2.0” in the git repository at https://gitlab.com/oryx/oryx-manifest.git.
* Source code tarball: See https://www.toganlabs.com/downloads/oryx/distro/0.2.0/oryx-0.2.0.tar.xz.

* Various compiled images: See files under https://www.toganlabs.com/downloads/oryx/distro/0.2.0/.

2.2 oryx-apps

2.2.1 v0.2.4

This is a bugfix release of the oryx-apps project. The following bugs are fixed:
* Version number was not updated correctly for previous release.
This release is available in the following forms:
* Source code via git: See tag “v0.2.4” in the git repository at https://gitlab.com/oryx/oryx-apps.git

* Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.4/oryx-apps-0.2.4.tar.xz

2.2. oryx-apps 5


https://gitlab.com/oryx/oryx-manifest.git
https://www.toganlabs.com/downloads/oryx/distro/0.3.0/oryx-0.3.0.tar.xz
https://www.toganlabs.com/downloads/oryx/distro/0.3.0/
https://gitlab.com/oryx/oryx-manifest.git
https://www.toganlabs.com/downloads/oryx/distro/0.2.0/oryx-0.2.0.tar.xz
https://www.toganlabs.com/downloads/oryx/distro/0.2.0/
https://gitlab.com/oryx/oryx-apps.git
https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.4/oryx-apps-0.2.4.tar.xz
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2.2.2 v0.2.3

This is a feature release of the oryx-apps project. The following features are added:

Add initial test suite.

This release is available in the following forms:

Source code via git: See tag “v0.2.3” in the git repository at https://gitlab.com/oryx/oryx-apps.git

Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.3/oryx-apps-0.2.3.tar.xz

2.2.3 v0.2.2

This is a feature release of the oryx-apps project. The following features are added:

Handle runc kill failure in oryxcmd stop_guest
Add tmpfs mounts for guest containers

Allow configuration of guest capabilities

This release is available in the following forms:

Source code via git: See tag “v0.2.2” in the git repository at https://gitlab.com/oryx/oryx-apps.git

Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.2/oryx-apps-0.2.2.tar.xz

2.2.4 v0.2.1

This is a feature release of the oryx-apps project. The following features are added:

Add oryx-guests initscript to autostart enabled guests at boot and autostop guests at shutdown.

Improve messages for autostart_all/autostop_all commands.

This release is available in the following forms:

Source code via git: See tag “v0.2.1” in the git repository at https://gitlab.com/oryx/oryx-apps.git

Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.1/oryx-apps-0.2.1 .tar.xz

2.2.5 v0.2.0

This is a feature release of the oryx-apps project. The following features are added:

Drop oryx—guest-init, switch to dumb-init (https:/github.com/Yelp/dumb-init) for PID 1 inside
guests.

Add start_guest and stop_guest commands, allowing simple container management without having to
learn the exact arguments needed by runc. Guests started via start_guest receive no input from the terminal
and write all output to a log file in the container’s directory under /var/lib/oryx—guests.

Add enable_guest and disable_guest commands, allowing guests to be configured for automatic start
on boot of the host system.

Add autostart_all and autostop_all commands, intended for use within an initscript to start all
enabled guests during system boot and stop all running guests during system shutdown.

Allow the main command within a guest to be chosen during image creation.

This release is available in the following forms:

Chapter 2. Release History
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* Source code via git: See tag “v0.2.0” in the git repository at https://gitlab.com/oryx/oryx-apps.git.

* Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.2.0/oryx-apps-0.2.0.tar.xz.

2.2.6 v0.1.1

This is a bugfix release of the oryx-apps project. The following bugs are fixed:

* oryxcmd failed to create the /var/lib/oryx—guests directory on the first command invocation.
This release is available in the following forms:

* Source code via git: See tag “v0.1.1” in the git repository at https://gitlab.com/oryx/oryx-apps.git.

* Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.1.1/oryx-apps-0.1.1.tar.xz.

2.2.7 v0.1.0

This initial release contains the following applications:
* oryx—guest-init: A cut-down init system suitable for use in a guest container.

e oryxcmd: A command-line tool for managing guest containers within an Oryx Linux host system. The fol-
lowing features are supported:

— Add sources which define the locations where container images may be downloaded from.

Create new guest containers using images available from the defined sources.

Remove defined sources and guests.

List and show defined sources and guests.

Use runc to execute defined guests.
This release is available in the following forms:
* Source code via git: See tag “v0.1.0” in the git repository at https://gitlab.com/oryx/oryx-apps.git.

* Source code tarball: See https://www.toganlabs.com/downloads/oryx/oryx-apps/0.1.0/oryx-apps-0.1.0.tar.xz.

2.2. oryx-apps 7
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CHAPTER
THREE

USING ORYX LINUX

This section describes how to install and use Oryx Linux on an embedded device.

3.1 Supported Platforms

This release of Oryx Linux supports all features on the following demonstration platforms:
* Emulated x86 systems using QEMU:
— gemux86: 32-bit emulated x86 system.
— gemux86-64: 64-bit emulated x86-64 system.
» Raspberry Pi 32-bit ARM based systems:
— raspberrypi: The original Raspberry Pi Model.
— raspberrypi?2: Raspberry Pi 2.
— raspberrypi3: Raspberry Pi 3 in 32-bit mode.
— raspberrypi3-64: Raspberry Pi 3 in 64-bit mode.
* Beaglebone Black ARM based system:

— beaglebone-yocto: Beaglebone Black.

3.2 Installation and Getting Started

3.2.1 gemux86

Download the appropriate kernel and rootfs images for the desired QEMU platform from the v0.4.0 release:
* Kernel image [32-bit x86]
» Kernel image [64-bit x86-64]
* Rootfs image [32-bit x86]
* Rootfs image [64-bit x86-64]

The rootfs image must first be decompressed:

unxz oryx—native-host-gemux86.ext4.xz

To launch gemu:



https://downloads.toganlabs.com/oryx/distro/0.4.0/qemux86/native/host/bzImage-qemux86.bin
https://downloads.toganlabs.com/oryx/distro/0.4.0/qemux86-64/native/host/bzImage-qemux86-64.bin
https://downloads.toganlabs.com/oryx/distro/0.4.0/qemux86/native/host/oryx-native-host-qemux86.ext4.xz
https://downloads.toganlabs.com/oryx/distro/0.4.0/qemux86-64/native/host/oryx-native-host-qemux86-64.ext4.xz
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gemu-system—-1386 —-kernel bzImage-gemux86.bin -hda oryx—-native-host-gemux86.ext4d \
—append "root=/dev/hda"

For further details on the configuration and use of gemu, see the gemu documentation.

3.2.2 Raspberry Pi

Download the appropriate SD card image for the desired Raspberry Pi model from the v0.4.0 release:
* SD card image [raspberrypi]
* SD card image [raspberrypi2]
* SD card image [raspberrypi3]
e SD card image [raspberrypi3-64]

Once the appropriate SD card image has been downloaded, it must first be decompressed:

’unxz oryx-native-host-raspberrypi.rpi-sdimg.xz

The uncompressed SD card image should then be written to an appropriate SD card (in this example the target SD
card appears in the system as /dev/sdb but this should be replaced by the correct path for the system in use):

’dd if=oryx-native—-host-raspberrypi.rpi-sdimg of=/dev/sdb bs=1M

The SD card may then be removed and placed into the Raspberry Pi device itself.

3.2.3 Beaglebone Black

Download the SD card image for the Beaglebone Black from the v0.4.0 release:
* SD card image

Once the appropriate SD card image has been downloaded, it must first be decompressed:

’unxz oryx—-native-host-beaglebone-yocto.wic.xz

The uncompressed SD card image should then be written to an appropriate SD card (in this example the target SD
card appears in the system as /dev/sdb but this should be replaced by the correct path for the system in use):

’dd if=oryx-native-host-beaglebone-yocto.wic of=/dev/sdb bs=1M

The SD card may then be removed and placed into the Beaglebone Black device itself.

3.3 Logging In

After installation you can login as root with the default password oryx.

3.4 Adding Guest Containers

One the Oryx Linux host system has been set up, the oryxcmd tool may be used to create guest containers.

Firstly, the appropriate official source for this release should be configured:

10 Chapter 3. Using Oryx Linux
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* gemux86:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/gemux86

* raspberrypi:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi

* raspberrypi2:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi?2

* raspberrypi3:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi3

* raspberrypi3-64:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi3-64

* beaglebone-yocto:

oryxcmd add_source oryx \
http://downloads.toganlabs.com/oryx/distro/0.4.0/beaglebone-yocto

Once this source is configured, a guest container can be created from one of the following images:

* minimal image:

’oryxcmd add_guest test oryx:minimal

e full-cmdline image:

’oryxcmd add_guest test oryx:full-cmdline

The guest image may then be booted using runc as follows:

oryxcmd runc test run test

For further details, see the full documentation for the oryxcmd tool.

3.4. Adding Guest Containers 11



Oryx Linux Documentation, Release 0.4.0

12 Chapter 3. Using Oryx Linux



CHAPTER
FOUR

ORYX-APPS

oryx-apps is a collection of applications which implement the core functionality of the Oryx Linux distro. However,
oryx-apps is also available independently of Oryx Linux and so these applications may be re-used and integrated into
other Linux distros if desired.

4.1 oryxcmd

oryxcmd is the core of the “host” application profile within Oryx Linux. It is responsible for the management of
guest containers and the sources from which container images may be obtained. As a command-line application it has
both an interactive mode and a non-interactive mode.

4.1.1 Interactive Mode

In the interactive mode, oryxcmd is started without specifying a command:

$ oryxcmd
Welcome to oryxcmd (oryx—apps v0.2.4)
oryxcmd>

At the oryxcmd prompt, any of the supported Commands may be executed. For example:

oryxcmd> list_sources
oryx

To leave interactive mode, use the exit command:

oryxcmd> exit

4.1.2 Non-interactive Mode

In the non-interactive mode, oryxcmd is executed with a command specified as an argument. The specified command
will be executed and then oryxcmd will exit. For example:

$ oryxcmd list_sources
oryx

Any of the supported Commands may be executed in this way.

13




Oryx Linux Documentation, Release 0.4.0

4.1.3 Command Line Arguments

The following command line arguments are supported by oryxcmd:

e —v, ——verbose: Print verbose debug messages during operation. This argument is usable for both interactive
and non-interactive mode.

* —h, ——help: Print help messages and exit.

* -V, -—version: Print version string and exit.

4.1.4 Commands

add_source

Register a new source from which images may be fetched.

Usage:

add_source NAME URL

Arguments:
* NAME: An identifier which may be used to reference this source in future commands.
e URL: The root URL under which image archives may be found.

Example:

oryxcmd> add_source oryx http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi3
Added source "oryx" with URL "http://downloads.toganlabs.com/oryx/distro/0.4.0/
—raspberrypi3"

remove_source

Remove a previously registered source.

Usage:

remove_source NAME

Arguments:
e NAME: The identifier of the source to remove.

Example:

oryxcmd> remove_source oryx
Removed source "oryx"

list_sources

List all currently registered sources.

Usage:

14 Chapter 4. oryx-apps
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list_sources

This command has no arguments.

Example:

oryxcmd> list_sources
oryx

show_source

Show details of a previously registered source in JSON format.

Usage:

show_source NAME

Arguments:
e NAME: The identifier of the source to show.

Example:

oryxcmd> show_source oryx
{
"url": "http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi3"

add_guest

Create a new guest container from an image.

Usage:

add_guest NAME IMAGE

Arguments:
* NAME: An identifier which may be used to reference this source in future commands.

e IMAGE: A fully-qualified reference to an image which is available from one of the sources which has been
configured. The format of this reference is <source>:<image_name>:

— source: The identifier of a registered source.

— image_name: The name of an image which is available within the identified source. The image name
typically matches the name of an Application Profile which has been built for the system on which
oryxcmd is running.

Example:

oryxcmd> add_guest test oryx:minimal
Added guest "test" from image "oryx:minimal"
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remove_guest

Delete an existing guest container.

Usage:

remove_guest NAME

Arguments:
* NAME: The identifier of the guest container to remove.

Example:

oryxcmd> remove_guest test
Removed guest "test"

list_guests

List all currently registered guests.

Usage:

list_guests

This command has no arguments.

Example:

oryxcmd> list_guests
test

show_guest

Show details of a previously registered guest in JSON format.

Usage:

show_guest NAME

Arguments:
* NAME: The identifier of the guest to show.

Example:

oryxcmd> show_guest test

{

"autostart_enabled": 0,
"image": {
"APPLICATION_PROFILE": "minimal",
"COMMAND": "/bin/sh",
"DISTRO": "oryx",
"MACHINE": "raspberrypi3",
"ROOTFS": "oryx—-guest-minimal-raspberrypi3.tar.xz",
"SYSTEM_PROFILE": "guest",
"VERSION": "0.4.0"

(continues on next page)
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(continued from previous page)

}I
"image_name": "minimal",
"path": "/var/lib/oryx-guests/test",
"source": {
"url": "http://downloads.toganlabs.com/oryx/distro/0.4.0/raspberrypi3"
}I

"source_name": "oryx"

enable_guest

Enable auto-start of a previously registered guest during system boot.

Usage:

enable_guest NAME

Arguments:
e NAME: The identifier of the guest to enable.

Example:

oryxcmd> enable_guest test
Enabled guest "test"

disable_guest

Disable auto-start of a previously registered guest during system boot.

Usage:

disable_guest NAME

Arguments:
» NAME: The identifier of the guest to disable.

Example:

oryxcmd> disable_guest test
Disabled guest "test"

start_guest

Start an existing guest container. The container is launched in the background, without access to the terminal where
start_guest was executed.

Usage:

start_guest NAME

Arguments:

e NAME: The identifier of the guest container to start.
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Example:

oryxcmd> start_guest test
Started guest "test"

stop_guest

Stop a running guest container. SIGTERM is sent to the container so that it can shutdown cleanly. After 10 seconds,
the container is halted.

Usage:

stop_guest NAME

Arguments:
* NAME: The identifier of the guest container to stop.

Example:

oryxcmd> stop_guest test
Stopped guest "test"

autostart_all

Start all containers which have autostart enabled.

Usage:

autostart_all

This command has no arguments.

Example:

oryxcmd> autostart_all
Started guest "test"
Autostart all enabled guests complete

autostop_all

Stop all currently running containers.

Usage:

autostop_all

This command has no arguments.

Example:

oryxcmd> autostop_all
Stopped guest "test"
Autostop all running guests complete
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runc

Execute runc for an existing guest container. See the documentation of runc for further details.

Usage:

runc NAME ARGS...

Arguments:
* NAME: The identifier of the guest container for which ‘runc’ will be executed.

e ARGS. . .: Command line arguments passed through to the ‘runc’ application.

help

List available commands with “help” or detailed help with “help cmd”.

Usage:

help [CMD]

Arguments:

e CMD: The name of a supported command. If this argument is given, detailed help for the chosen command is
printed.

Example:

oryxcmd> help

Documented commands (type help <topic>):

add_guest disable_guest 1list_guests runc stop_guest
add_source enable_guest list_sources show_guest version
autostart_all exit remove_guest show_source
autostop_all help remove_source start_guest

Miscellaneous help topics:

arguments

version

Display version information.

Usage:

version

This command has no arguments.

Example:

oryxcmd> version
oryxcmd (oryx—apps v0.2.4)
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exit

Exit the interactive oryxcmd shell.

Usage:

exit

This command has no arguments.

Example:

’oryxcmd> exit
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CHAPTER
FIVE

BUILDING ORYX LINUX IMAGES

Oryx Linux introduces two major new concepts to the OpenEmbedded build system: these are System Profiles and
Application Profiles. This section will also discuss how these concepts are integrated into the OpenEmbedded Recipes
in the meta-oryx layer.

5.1 System Profiles

A system profile complements the OpenEmbedded machine selection and essentially specifies how the image we are
building will be deployed onto the selected machine. Many platforms may be booted in multiple ways (local boot from
flash memory vs remote boot via tftp for instance) and a system profile may be used to specify a boot mechanism.
Additionally, an image may run under different virtualisation methods on a given platform and a system profile may
be used to specify the chosen method. In each case the system profile will ensure that the correct build artifacts are
produced to match how the image will be used. As system profiles are orthogonal to machine selection, consistent
boot or virtualisation methods may be enforced across multiple platforms.

Two system profiles are provided in this release:

* native: This profile indicates that the image will run “bare metal” on the chosen platform. Build artifacts
suitable for writing to an SD card, USB stick or embedded flash memory are produced and are then compressed
to save space. When possible, u-boot is enabled to provide greater boot-time flexibility.

* guest: This profile indicates that the image will run as a container guest under runc. No bootloader or kernel
is compiled for this profile. Build artifacts are always compressed tar archives of a rootfs, ready for installation
onto a host system.

The system profile is determined by the ORYX_SYSTEM_PROFILE variable.

5.1.1 Porting the native System Profile

When porting Oryx Linux to new target platforms it is usually necessary to modify the native system profile. The
following variables need to be correctly defined for each target platform:

e IMAGE_FSTYPES: This variable determines the format of the rootfs image which is created. For physical
devices this is usually a complete image, including kernel and bootloader, ready to be directly copied into flash
memory or onto an SD Card or USB stick. However for emulated targets this may simply be a filesystem
image. For officially supported platforms, xz compression is usually used to reduce the storage and bandwidth
requirements on our servers.

* ORYX_ROOTFS_IMAGE: This is the filename of the main rootfs image as produced by bitbake for the target
platform. The existing values for supported platforms may be used for reference as the filename typically only
differs in the extension (which is determined by the value of IMAGE_FSTYPES). However, the filename can be
changed completely if the rootfs artifact for the target platform is not named in the usual way.
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* ORYX_KERNEL_TIMAGE: The is the filename of the kernel image as produced by bitbake for the target plat-
forms. Where the rootfs image contains the kernel and bootloader this is usually left empty.

Most platforms can be supported with modification of just the above variables. If further customisation is needed, see
the following section on Writing System Profiles.

5.1.2 Writing System Profiles

The existing nat ive and guest system profiles are suitable for most use cases but it may occasionally be necessary
to create new profiles.

The key variables in a system profile are as follows:

* ORYX_SYSTEM_PROFILE_PACKAGES: This is the list of additional packages to install into the rootfs for this
system profile.

* ORYX_SYSTEM_PROFILE_PUBLISH_DEPENDS: This is the list of bitbake tasks which must be completed
before attempting to publish artifacts. Typically it will contain the oryx-image : do_build task which will
create the rootfs image and all its dependencies. Additional tasks may be added if needed.

* ORYX_SYSTEM_PROFILE_PUBLISH_FILES: This is the list of files to publish into the pub directory. It
typically contains the rootfs image and any supporting files (such as a kernel image, bootloader image, etc).

5.2 Application Profiles

An application profile specifies the use-case of a given image and typically corresponds to a particular software pack-
age or package group. The configurability here is greater than a traditional OpenEmbedded image recipe though, as
the application profile may set PACKAGECONF IG values and other options to be applied to all components within
an image. So it’s possible to build a lightweight configuration of a library for one application profile but then enable
additional options when building for a different application profile.

An Oryx Linux image is built with only one application profile. The expected use case is to deploy the host applica-
tion profile using the nat i ve system profile onto a device and build additional images using the guest system profile
for each required application profile. With this method each application profile corresponds to a separate container
within the host system resulting in a more secure and manageable device.

Three major system profiles are provided in this release:

e full-cmdline: This profile simply includes the OpenEmbedded full-cmdline packagegroup. It is a good
demonstration container as it has a user-friendly set of command line tools installed with documentation.

* minimal: This profile provides the minimal software needed to boot and run a system. It is a good starting
point for developing new application profiles.

e host: This profile includes runc and other tools needed to setup Linux containers. It provides a host environ-
ment for images built using the guest system profile described above.

It’s expected that Oryx will be enhanced by the addition of many more application profiles in future releases.

The application profile is determined by the ORYX_APPLICATION_PROFILE variable.

5.2.1 Writing Application Profiles

A new application profile is typically written for each application or service which is to be deployed in Oryx Linux.

The key variables in an application profile are as follows:
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* ORYX_APPLICATION_PROFILE_PACKAGES: This is the list of additional packages to install into the rootfs
for this application profile.

When the guest system profile is selected, the following additional variables are used to configure the guest con-
tainer:

* ORYX_GUEST_CAPABILITIES: This is the list of Linux capabilities to grant to the container. It defaults to
the minimal capability set of CAP_AUDIT_WRITE, CAP_KILL and CAP_NET_BIND_SERVICE and typi-
cally you will just need to extend this list with any additional capabilities needed. For details on the available
capabilities, see the Linux capabilities (8) manual page.

* ORYX_APPLICATION_COMMAND: This is the main application command to execute when the guest container
is started. The command line is tokenised into separate arguments however no further parsing is performed (so
for example environment variables cannot be used). The best practice is to create a start script which performs
any necessary initialisation and then starts the main service or application. For an example of a start script see
the start-sshd script and recipe in the meta-oryx layer.

5.3 OpenEmbedded Recipes

5.3.1 oryx-image

The concept of an application profile effectively supersedes the OpenEmbedded concept of an image recipe. Therefore
we only make use of one image recipe within Oryx and this is the oryx—image recipe. This recipe pulls in the
packages needed by the chosen application and system profiles.

The oryx—-image recipe also ensures that an extended os-release file is included in the image. This
os-release file includes the usual information such as the distro name, version and home URL as well as Oryx-
specific information such as the selected system profile, application profile and machine.

5.3.2 image-json-file

The image—json-file recipe creates a JSON formatted data file for the current image which is used by oryxcmd
when downloading the image onto a host system.

5.3.3 oryx-publish

To simplify deployment of Oryx images we also have a top-level oryx—publish recipe. This recipe copies files
specified by the chosen system profile from the OpenEmbedded deploy/images directory to a new deploy/
oryx directory. This may seem trivial but it gives two benefits. As only those files required by the boot or installation
method used with a given system profile are copied into the new directory, there is no clutter or confusion. Also, the
deploy/oryx directory has sub-directories for the current version, selected system profile and selected application
profile and this ensures that an image produced for one configuration is not accidentally overwritten by a subsequent
build for a different configuration.

In normal usage, the top-level bitbake recipe used to build an Oryx image will therefore be oryx-publish.

5.4 Using Integrated Sources

The recommended way to build Oryx Linux images is to use the integrated source tree which combines the
meta-oryx layer and a pre-configured build environment with the OpenEmbedded build system. This is the method
which is used for Oryx Linux releases and is regularly tested as part of the Continuous Integration (CI) system.

5.3. OpenEmbedded Recipes 23



Oryx Linux Documentation, Release 0.4.0

The full contents of the integrated Oryx Linux sources is as follows:
* The base openembedded-core layer.
* The corresponding version of bitbake.
* Additional supporting layers: meta-openembedded and meta-virtualisation.
* Additional BSP layers: meta-raspberrypi and meta-yocto.
* The Oryx Linux distro layer: meta-oryx.

* Pre-configured build environment consisting of build/conf/local.conf and build/conf/
bblayers.conf files which typically do not require further modification.

e The build/conf/setenv environment setup script.

* Build scripts and other supporting scripts under build/scripts/.

5.4.1 Fetching and Updating Sources

Integrated sources may be obtained either from a source release in . tar . xz format, or from git using the repo tool.

Using a Source Release

Each point release of Oryx Linux includes a source tarball alongside the compiled images. This integrated source re-
lease contains all OpenEmbedded layers needed to build Oryx Linux images and is essentially a point-in-time snapshot
of the sources which may be obtained from git using the repo tool.

For the v0.4.0 release, this source release may be obtained from https://downloads.toganlabs.com/oryx/distro/0.4.0/
oryx-0.4.0.tar.xz.

Once a source release has been downloaded, it simply needs to be extracted before following the steps in the Preparing
the Environment section.

Using repo

The sources for Oryx Linux are split between several git repositories and the repo tool may be used to fetch an
integrated source tree which combines these repositories. This method allows a formal Oryx Linux release to be
obtained with similar results to Using a Source Release above. It also allows the latest commit from each repository
on either the master branch or a stable branch to be obtained.

Firstly, the repo tool must be installed as follows:

* For Ubuntu 16.04, simply execute apt install repo asroot. This may also work on more recent releases
of Ubuntu and related distributions.

 For other distributions, see the installation instructions at https://source.android.com/source/downloading#
installing-repo.

Then in a new, empty directory initialise repo as follows:

* To use the master branch of Oryx Linux:

repo init -u git@gitlab.com:oryx/oryx-manifest.git

The master branch is the active development branch and so may incorporate breaking changes at any time.
Follow the master branch at your own risk!

* To use a stable branch of Oryx Linux, such as the sumo branch:
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repo init -u git@gitlab.com:oryx/oryx-manifest.git -b sumo

Changes in the stable branches follow a strict stable branch policy and so should not introduce breakage. Stable
branch names match those used in OpenEmbedded, for further details see the upstream list of stable branches
and maintainers.

* To use a formal release of Oryx Linux, such as the v0.4.0 release:

repo init -u git@gitlab.com:oryx/oryx-manifest.git -b refs/tags/v0.4.0

For other tagged releases, ensure that the refs/tags/ prefix is used in the repo init command.

Once repo has been initialised, sources may be obtained by running repo sync. To update sources at a later date,
simply re-run repo sync.

5.4.2 Preparing the Environment

Once the Oryx Linux source tree has been downloaded, simply source the build/conf/setenv script in a bash
shell to prepare the environment for a build:

source build/conf/setenv

5.4.3 Build Script

Once you have sourced the setenv script, you can use run-build:

scripts/run-build.py [-C] [-L] [-V VERSION] [-M MACHINE] [-S SYSTEM_PROFILE] \
[-A APPLICATION_PROFILE]

This script uses bitbake to build the recipe specified by oryx-publish.

Output files from run-build are saved in the pub directory, which is divided into subdirectories by, respectively: version,
machine, system profile, and application profile. As well as the build output, this contains the log file if you have
chosen -L, and a FAILED file if the build itself has failed.

Customising a build

There are a number of ways available to customise your build.

* -V VERSION: Sets the ORYX_VERSION variable.
— Allows you to specify the version string used to identify this build.
— The default value is “dev”.

* —S SYSTEM_PROFILE: System profile selection.
— This sets the ORYX_SYSTEM_PROFILE variable.
— See the System Profiles section for details on how system profiles work, and what options are available.
— The default value is “native”.

e —A APPLICATION_PROFILE: Application profile selection.
— This sets the ORYX_APPLICATION_PROFILE variable.

— See the Application Profiles section for details on application profiles, as well as the options available.
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— The default value is “minimal”.
e —M MACHINE: Machine selection.
— This sets the MACHINE variable.

— Supported machines are: gemux86, gemux86-64, raspberrypi, raspberrypi2,
raspberrypi3, raspberrypi3—-64 and beaglebone-yocto.

— The default value is “qemux86”.
* —C: Performs a clean build.

— Removes the contents of the tmp directory before running bitbake.

— The default is not to perform a clean build, leaving the previous content of the tmp directory intact.
e -1, ——1logs: Captures and archives log files.

— Log files are copied from the tmp directory into a logs.tar.gz file lo-
cated in: pub/$ {ORYX_VERSION}/S${MACHINE}/${ORYX_SYSTEM PROFILE}/
${ORYX_APPLICATION_PROFILE}.

— The default is not to capture log files.

For example:

scripts/run-build.py -S native -A host -C

Performs a clean build using the nat ive system profile and the host application profile.

5.4.4 Using Bitbake Directly

During development it may be desirable to use bitbake directly, for example to build a particular recipe rather than a
whole image. First, source the configuration script as described in Preparing the Environment. Then it is possible to
invoke bitbake from the build directory in the usual way.

Typically the MACHINE value is selected on the command line when running bitbake directly to avoid the need to
modify local.conf.

For example, to build just bash for the raspberrypi3 device:

’MACHINE=raspberrypi3 bitbake bash

5.5 Using meta-oryx as a Standalone Layer

Although the above method of Using Integrated Sources is preferred as this is the tested and supported method, it’s
also possible to use the met a—oryx layer as a traditional OpenEmbedded layer. This layer may be obtained from the
git repository at https://gitlab.com/oryx/meta-oryx and added into an OpenEmbedded build environment as normal.

Once the meta-oryx layer has been added to the OpenEmbedded build environment, the following variables should
be setin conf/local.conf or another appropriate location to fully configure the Oryx Linux distribution:

¢ Set the distro: DISTRO = "oryx".

 Set the Oryx Linux version: ORYX_VERSION = "custom". Using a unique version string here will help
identify this build.

e Choose a System Profile: ORYX_SYSTEM_PROFILE = "native".
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e Choose an Application Profile: ORYX_APPLICATION_PROFILE = "minimal".

Once these variables are set appropriately, bitbake may be executed as normal. As discussed in the section on Open-
Embedded Recipes, the top-level command to build an Oryx Linux image is typically bitbake oryx-publish.
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